Korean Academic Society of Business Administration
[ Article ]
korean management review - Vol. 49, No. 1, pp.51-74
ISSN: 1226-1874 (Print)
Print publication date 29 Feb 2020
Received 16 Aug 2019 Revised 05 Nov 2019 Accepted 26 Nov 2019
DOI: https://doi.org/10.17287/kmr.2020.49.1.51

신경망모델(Neural Network Model)을 활용한 CSR활동의 영향력 분석

김주영* ; 유승경**
*(제1저자, 교신저자) 서강대학교 jkimsg@sogang.ac.kr
**(공저자) 서강대학교 ysg412@naver.com
Analyzing the Impact of CSR Activities Using a Neural Network Model
Juyoung Kim* ; Seunggyeong Yu**
*Sogang Business School, First Author, Corresponding Author
**Sogang Business School, Co-Author

초록

기업경영에 있어서 기업의 CSR은 국제 표준 가이드라인이 발표될 만큼 중요한 부분으로 자리매김하고 있다. 국제표준화기구(International Organization for Standardization: IOS)에서는 ISO26000라는 기업의 CSR에 대한 표준 가이드라인을 발표하였으며, 인권, 공정한 영업 관행, 커뮤니티 관여 및 개발 등을 주요 주제로 삼았다. 이는 기업의 CSR 중 내부적 CSR의 중요성을 나타낼 뿐만 아니라, 세계 표준에 맞추어 한국 기업들 역시 내부적인 CSR을 고려해야 함을 뜻한다. 하지만 기존 국내 기업의 CSR 활동은 대부분 기부, 자선단체 설립, 지역 사회 개발과 같은 외부적 CSR 활동에 치중해 있으며, CSR 활동과 재무적 성과 간의 관계를 분석한 여러 연구 결과 역시 외부적 CSR 활동과 많은 관련이 있다.

본 연구는 기업의 내부적 CSR 시행 여부가 기업 성과에 어떤 영향을 미치는지 인공 신경망을 통해 알아보았다. 2015년부터 2018년까지 국내 상장기업의 사업보고서 데이터와 내부적 CSR 활동에 대한 데이터를 바탕으로 내년도 기업의 성과를 예측하는 인공 신경망 모델을 구현하였다. 총 7가지 모델을 구현하였으며 각 모델은 독립, 매개, 조절 효과의 특징을 반영하였다. 모델들의 적합도 비교는 데이터들을 bootstrap과 같이 re-sampling 하여 모델별로 500개의 RMSE를 계산하여 t-test를 실행하였는데, 조절효과 모델이 가장 좋은 결과를 보였다.

다음으로 가장 결과가 좋았던 조절효과 모델을 바탕으로 기업이 내부적 CSR 활동을 한다고 가정하였을 때 기존성과에 비해 기업성과가 어떻게 나타나는지를 예측해보았다. 그 결과 통계적으로 주식가격, 매출액, 영업이익에서 모두 유의한 차이가 나타났다.

Abstract

Corporate CSR in corporate management is positioned as an important part as international standard guidelines are published. The International Organization for Standardization (IOS) released ISO 26000, a standard guideline for corporate CSR, with the main themes of human rights, fair business practices, community involvement, and development. This not only shows the importance of internal CSR incorporate CSR but also means that Korean companies need to consider internal CSR in line with global standards. However, most of the CSR activities of existing domestic companies were donated and charitable organizations were established, focusing on external CSR activities such as the development of local communities, and analyzing the relationship between CSR activities and financial results Some research results are also related to external CSR activities.

In this study, we investigated the effect of whether or not a company's internal CSR is implemented on corporate performance through an artificial neural network. Based on the business report data of domestic manufacturing companies from 2015 to 2018 and the data of internal CSR activities, an artificial neural network model that predicts the business performance of the next year was implemented. Seven types of models were implemented, and each model independently reflected the characteristics of parameters and adjustment effects. For the comparison of model fits, re-sampling the data like bootstrap and calculating 500 RMSEs per model and running t-test, the adjustment effect model showed the best results.

Next, based on the adjustment effect model with the best results, we assumed how the company's business performance would be displayed compared to the existing results, assuming that the company has internal CSR activities. As a result, there were statistically significant differences in stock prices, sales, and operating income.

Keywords:

Artificial neural network, internal CSR, company financial performance, moderating effect, mediating effect

키워드:

인공신경망, 내부적 CSR, 기업재무성과, 조절효과, 매개효과

References

  • 김주영 (2018). “신경망(Neural network)모델들의 비교를 통한 가맹사업 매출예측분석,” 마케팅연구, 33 (3), pp.73-90.
  • 박병옥(2007), “기업의 사회적 책임과 시민단체,” 제1회 CSR포럼 - 기업의 사회적 책임(CSR)의 국내외 동향과 시민사회단체(NGO)의 역할 발제문, pp. 64-69.
  • 박혜원, & 한주희(2011). “기업의 사회적 책임 (CSR) 이 조직 구성원의 조직몰입과 조직시민행동에 미치는 영향에 관한 연구,” 조직과 인사관리연구, 35, pp.115-140.
  • 이상민(2008). “이중적 CSR 체제의 기원,” 한국사회학, 42(7), pp.215-253.
  • 이수영(1999). “신경 컴퓨터와 뇌-기계에게 지능을! 인간에게 자유를!” 과학사상, (29), pp.138-157.
  • 이수정, & 윤정구(2010). “기업의 사회적 책임 활동의 야누스 효과,” 한국인사조직학회 발표논문집, pp. 1-30.
  • 한국상장회사협의회 (2005). Kocoinfo, March, 20, 2019, Available at http://www.kocoinfo.com
  • 황호찬(2009). “기업의 비재무적 정보가 기업 가치에 미치는 영향-회계가치 모형을 이용한 기업의 사회적책임을 중심으로,” 회계정보연구, 27(3), pp.215-236.
  • Anker, R., Chernyshev, I., Egger, P., Mehran, F., & Ritter, J. A. (2003). “Measuring decent work with statistical indicators,” International Labour Review, 142(2), pp.147-178. [https://doi.org/10.1111/j.1564-913X.2003.tb00257.x]
  • Baron, David P., Maretno A. Harjoto, and Hoje Jo (2009). “The Economics and Politics of Corporate Social Performance,” Stanford Graduate School of Business Research Paper, No. 1993 (Rock Center for Corporate Governance Working Paper No. 45), pp. 1-53. [https://doi.org/10.2139/ssrn.1202390]
  • Baron, R. M., & Kenny, D. A. (1986). “The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations,” Journal of Personality and Social Psychology, 51(6), pp.1173-1182 [https://doi.org/10.1037/0022-3514.51.6.1173]
  • Belloni, A., V. Chernozhukov, I. Fernández‐Val, C. Hansen (2017), “Program Evaluation and Causal Inference with High-Dimensional Data” Econometrica, Volume 85, Issue 1, pp.233-298 [https://doi.org/10.3982/ECTA12723]
  • Campolo, M., Andreussi, P., & Soldati, A. (1999). “River flood forecasting with a neural network model,” Water Resources Research, 35(4), pp.1191-1197. [https://doi.org/10.1029/1998WR900086]
  • Carroll, A. B. (1979). “A three-dimensional conceptual model of corporate performance,” Academy of Management Review, 4(4), pp. 497-505. [https://doi.org/10.5465/amr.1979.4498296]
  • Clarkson, M. E. (1995). “A stakeholder framework for analyzing and evaluating corporate social performance,” Academy of Management Review, 20(1), pp.92-117. [https://doi.org/10.5465/amr.1995.9503271994]
  • Celeux, Gilles, Marie-Laure Martin-Magniette, Cathy Maugis-Rabusseau and Adrian E. Raftery (2013), “Comparing Model Selection and Regularization Approaches to Variable Selection in Model-Based Clustering,” arXiv:1307.7860v1 [stat.AP]
  • Dutton, J. E., & Dukerich, J. M. (1991). “Keeping an eye on the mirror: Image and identity in organizational adaptation,” Academy of Management Journal, 34(3), 517-554. [https://doi.org/10.2307/256405]
  • Efron, B., & Tibshirani, R. J. (1993). An Introduction to the Bootstrap, Monographs on Statistics and applied probability, volume 57, Chapman & Hall/CRC
  • Farrell, Max H., Tengyuan Liang, Sanjog Misra (2019), “Deep Neural Networks for Estimation and Inference,” arXiv:1809.09953v3 [econ.EM]
  • Feihong Xia, Rabikar Chatterjee, Jerrold H. May (2019), “Using Conditional Restricted Boltzmann Machines to Model Complex Consumer Shopping Patterns.” Marketing Science, 38 (4), pp.711-727. [https://doi.org/10.1287/mksc.2019.1162]
  • Galant, Adriana and Simon Cadez (2017) “Corporate social responsibility and financial performance relationship: a review of measurement approaches,” Economic Research-Ekonomska Istraživanja, 30(1), pp.676-693. [https://doi.org/10.1080/1331677X.2017.1313122]
  • Gardner, M. W., & Dorling, S. (1998). “Artificial neural networks (the multilayer perceptron) —a review of applications in the atmospheric sciences,” Atmospheric Environment, 32 (14-15), pp.2627-2636. [https://doi.org/10.1016/S1352-2310(97)00447-0]
  • Hayes, Andrew F. (2013), An introduction to mediation, moderation, and conditional process analysis: A regression-based approach, New York, NY: Guilford Press.
  • Hopkins, Michael (2004), Corporate Social Responsibility: An Issues Paper, Available at SSRN: https://ssrn.com/abstract=908181 or http://dx.doi.org/10.2139/ssrn.908181 [https://doi.org/10.2139/ssrn.908181]
  • International Organization for Standardization (ISO). (2010). ISO 26000: 2010 guidance on social responsibility.
  • Kim, Jaehwan, Greg M. Allenby, and Peter E. Rossi (2002), “Modeling Consumer Demand for Variety,” Marketing Science, Summer, 21(3), pp.229-250. [https://doi.org/10.1287/mksc.21.3.229.143]
  • Manescu, Cristiana (2010), Economic Implications of Corporate Social Responsibility and Responsible Investments, Thesis, Department of Economics School of Business, Economics and Law, University of Gothenburg.
  • Margolis, J.D., H. Elfenbein, and J. Walsh (2009) “Does it pay to be good... and does it matter? A meta-analysis and redirection of research on corporate social and financial performance,” Working paper, Harvard University. [https://doi.org/10.2139/ssrn.1866371]
  • McCulloch, W. S., & Pitts, W. (1943). “A logical calculus of the ideas immanent in nervous activity,” The Bulletin of Mathematical Biophysics, 5(4), pp.115-133. [https://doi.org/10.1007/BF02478259]
  • McGuire, J. B., T. Schneeweis, and B. Branch (1990), “Perceptions of firm quality: A cause or result of firm performance,” Journal of Management, 16, pp.167-180. [https://doi.org/10.1177/014920639001600112]
  • Miller, T., Howe, P., & Sonenberg, L. (2017). “Explainable AI: Beware of inmates running the asylum or: How I learnt to stop worrying and love the social and behavioural sciences,” arXiv:1712.00547 [cs.AI]
  • Orlitzky, Marc, Frank L. Schmidt, Sara L. Rynes (2003), “Corporate Social and Financial Performance: A Meta-analysis,” Organization Studies, 24(3), pp.403–441. [https://doi.org/10.1177/0170840603024003910]
  • Rajaraman, V. (2014), “John McCarthy – Father of Artificial Intelligence,” RESONANCE Journal of Science Education, 19(3), pp. 198-207. [https://doi.org/10.1007/s12045-014-0027-9]
  • Refinitiv. “Why choose Eikon?” February 17, 2019, Available at https://www.refinitiv.com/en/ products/eikon-trading-software
  • Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). “Why should i trust you?: Explaining the predictions of any classifier,” In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. pp.1135-1144 [https://doi.org/10.1145/2939672.2939778]
  • Rosenblatt, F. (1958). “The perceptron: A probabilistic model for information storage and organization in the brain,” Psychological Review, 65(6), pp.386. [https://doi.org/10.1037/h0042519]
  • Russo, M. V., & Fouts, P. A. (1997). “A resourcebased perspective on corporate environmental performance and profitability,” Academy of Management Journal, 40(3), pp.534-559. [https://doi.org/10.2307/257052]
  • Schmidhuber, Jurgen (2014), “Deep learning in neural networks: An overview,” Neural Network, 61, pp.85-117. [https://doi.org/10.1016/j.neunet.2014.09.003]
  • Siu, Kai-Yeung and Vwani Roychowdhury (1992), “Optimal Depth Neural Networks for Multiplication and Related Problems,” Advances in Neural Information Processing Systems, 5, pp.59-64.
  • Tiwari, M. K., & Chatterjee, C. (2010). “Development of an accurate and reliable hourly flood forecasting model using wavelet–bootstrap–ANN (WBANN) hybrid approach,” Journal of Hydrology, 394(3-4), pp.458-470. [https://doi.org/10.1016/j.jhydrol.2010.10.001]
  • Turker, D. (2009). “How corporate social responsibility influences organizational commitment,” Journal of Business Ethics, 89(2), pp.189. [https://doi.org/10.1007/s10551-008-9993-8]
  • Waddock, Sandra A., and Samuel B. Graves (1997), “The corporate social performance financial performance link,” Strategic Management Journal, 18, pp.303–319. [https://doi.org/10.1002/(SICI)1097-0266(199704)18:4<303::AID-SMJ869>3.0.CO;2-G]
  • Webos, P. (1974). Beyond regression: new tools for prediction and analysis in the behavioral sciences. Thesis, Harvard University.

• 저자 김주영은 현재 서강대학교 경영대학 마케팅 전공 교수로 재직 중이다. 고려대학교 경영대학 및 대학원 경영학과를 졸업하였으며, 미국 미시간대학교에서 통계학 석사, 경영학(마케팅) 박사를 취득하였다. 주요연구분야는 Deep Learning을 활용한 모델링, 유통연구, 행동심리연구, 디지털마케팅전략 등이다.

• 저자 유승경은 숙명여자대학교 경영학부를 졸업하고, 서강대학교에서 경영학 석사 학위를 받았다.