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Ⅰ. Introduction

In usual restaurants and cafeterias, two 

main kinds of service are provided - food and 

seats. Customers need seats to eat food. Typical 

processes customers go through in restaurants 

are as follows: be seated, order food, receive 

the food and eat. In cafeterias, the process 

may slightly be different: order food, receive 

the food, be seated and eat. However, it is 

not always the case and some customers first 

occupy seats before they go to obtain the 

food. In that case, the sequence a customer 

goes through become similar to the one in 

restaurants. 

However, occupying seats before obtaining 

the food is sometimes considered as an im-

polite behavior especially in self-serviced 

cafeterias in universities (Saini, 2017). On the 

surface, it is a readily justifiable convention 

since the seats once occupied but not yet used 
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can be considered as a temporarily wasted 

resource. The objective of this paper is to 

analyze this convention and observe whether 

the behavior of occupying the seat first, if 

everybody follows it, is detrimental to the 

social welfare. This question has not an-

swered in previous literature to the best of 

our knowledge.

We first provide a novel setting to study this 

problem. In the mathematical model, customers 

receive a positive utility (which we call ‘reward’) 

from receiving the service. The net utility 

from the service is this reward subtracted by 

the disutility from waiting by adopting a 

widely accepted fact that customers take care 

of the time they spend waiting (see, Cho & 

Kim, 2007; Park, 2007). The waiting comes 

from two sources: waiting for the seat and 

waiting for the food. The customers are as-

sumed to calculate the net utility from the 

system and decide whether to join the system 

or not. The customers who do not join the 

queue receive the net utility normalized to 0.

In the first policy, customers are not allowed 

to occupy the seat before obtaining the food. 

Only customers who have received the service 

can be seated. In the second policy, customers 

are allowed to occupy the seat first. We as-

sume that once it is allowed, all the incoming 

customers will take the seat first. We first 

describe the dynamics of the systems under 

two policies and obtain the performances of 

the two policies and compare them. 

The typical queueing perspective is used in 

this analysis. However, obtaining the full 

exact description of the system is possibly a 

daunting task, which might be reflected in 

the lack of papers that deal with this question. 

Broadly, there are two ways to overcome the 

difficulty that lies in the exact analyslis of 

the system. One is to construct simulations 

(Park et al., 1999). The other way is to study 

approximated version and that is what we do 

in this paper. There are two broad kinds of 

approximations in queueing theory - fluid 

approximation and diffusion approximation. 

The fluid approximation can be thought of as 

a queueing version of the law of large num-

bers, while the diffusion approximation is a 

queueing version of the central limit theorem. 

In the fluid approximation, most of the sto-

chasticities are intentionally ignored, while 

the first moments of bigger scale parameters 

are discussed. In the diffusion approximation, 

the second moments are also incorporated in 

the model. 

We use the fluid approximation to describe 

the system and to find the stationary state 

that enables a comparison of the performances. 

We also use the framework that actively reflects 

the fact that customers are utility maximizer. 

The decision making process is explicitly pre-

sented in this framework, and some of the 

behavior of customers are not given as an exog-

enous one but an endogenous one. Especially, 

we assume that the decision of whether to 
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join the system or to balk are result of utility 

maximization decision. 

In our model, it turns out that the perform-

ances of the two policies - disallowing the 

occupation of the seat before getting the food 

and allowing it - are the same in terms of 

social welfare. The identity of the social welfare 

is an unanticipated result, especially to the 

people who perceive no-preoccupation policy 

to be superior in terms of efficiency. Hence, 

there is no ground to prohibit occupation at 

least in our framework. However, there may 

be other reasons that make it inefficient and 

we will also discuss these in the final section. 

Ⅱ. Literature review

We are studying a queueing network policy 

selection problem that is motivated by those 

in cafeterias. There are a few works that dealt 

with cafeterias. June & Jain(2010) resembles 

our work in that it studied a cafeteria queue 

using a fluid limit. However, the property of 

cafeteria queue June & Jain(2010) focus on 

was that it has a starting time and customers 

can arrive before it. It is a property that a 

cafeteria queue shares with a concert queue. 

The customer behavior on what time to arrive 

at the queue before the system opens is derived. 

Weber & Weiss(1994) and Füßler et al.(2019) 

also studied cafeteria queues and focused on 

the property that a cafeteria serves different 

foods. In Weber & Weiss(1994), a cafeteria 

is depicted as a system that provides multiple 

dishes. Customers make one line and they may 

or may not demand the dishes. Phenomena 

that arise in that kind of queueing network 

are studied. In Füßler et al.(2019), a single 

waiter is serving different food and customers 

demand different set of dishes. Customer 

sequencing and waiter scheduling problem 

were studied using mixed integer programming. 

Lastly, Stout Jr.(1995) and Lee & Lambert 

(2006) used simulation to study cafeteria 

queues. Among the above, none has focused 

on the property of cafeteria that we handled. 

Our work can be regarded as a paper that 

studies queuing systems using economic 

framework. Naor(1969) is deemed as the origin 

of the long stretch of works that are in this 

category. See Hassin & Haviv(2003) and 

Hassin(2013) for the surveys of this kind of 

works. 

Especially, we are using fluid limits to 

facilitate the discussion. Fluid limits were 

used in various contexts in queueing literature 

and there are huge amount of works that used 

fluid limits on descriptive queueing model. 

Typically, the sequence of original queueing 

systems is constructed and the fluid model in 

the limit is conjectured. The main parts of 

those works determined whether the sequence 

of the queueing systems converges to the given 

fluid model.
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In this literature review, we will review the 

works that applied fluid limit in the economic 

framework which include reward-cost struc-

tures or customer behavior. Rajagopal et al. 

(1995) is one of the first paper that uses fluid 

queue in the economic perspective. The typical 

reward-cost structure was incorporated in 

the fluid limits. Fluid models are used in more 

conventional queueing problem of revenue or 

social welfare optimization as in Maglaras & 

Zeevi(2005) where two class of services- guar-

anteed and best-effort - are provided and op-

timal prices are decided. Moreover, higher 

tractability of fluid models have allowed anal-

ysis of various unconventional queueing systems. 

Allon & Gurvich(2010) and studied the equi-

librium behavior of competing service providers. 

Both fluid scale and diffusion scale were used 

for the analysis. Allon et al.(2017) used fluid 

models to analyze the role of moderating firm 

in skill marketplace. Ata et al.(2017) applied 

it in a complex kidney transplantation problem. 

Afeche et al.(2017) put together various 

objectives and activities of large call centers 

that were typically studied individually in one 

model by using fluid models. Recently, on-off 

server problem with strategic customers were 

studied mainly with the fluid models. See 

Economou & Manou(2016), Liu et al.(2021), 

Wang & Xu(2021) and Logothetis et al. 

(2022).

Ⅲ. Model description

We first provide notations that can also 

cover dynamic cases, while our main analysis 

is on the stationary state. The customers are 

assumed to arrive with the rate of  where 

 denotes the time. Later in this paper, the 

incoming rate of the customers are given as a 

decision from utility maximizer. We focus on 

two kinds of service in cafeterias - obtaining 

the food and eating the food on the seats - 

and the time that it takes to get those serv-

ices are incorporated in the model. All other 

miscellaneous constituents, for example, going 

back and forth to the tables and serving areas 

are not considered in the model. Food is 

obtained with the rate of  and the individual 

customer will finish eating with the rate of 

. Since only the first moment remains in 

fluid models, if the incoming rate is , it 

not only means that the average number of 

the customers that enter the system is  

but also exactly the number of incoming cus-

tomers in the unit time is , i.e., typical 

randomness is not incorporated in the model. 

It also applies to the service rates  and .

There are two kinds of queues in our model 

- one before the food and one before the table. 

Depending on the policies, customers may 

first queue up before the food and second 

before the tables or first before the tables 
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and next before the food. Regardless of the 

policies, we denote the queue for the food at 

time  as  and the one for the table at 

time  as . Note that the customers may 

first wait in  before they wait in  

depending on the policy. In fluid models, the 

number of customers are allowed to be non- 

integer and also the queue lengths are defined 

as real numbers. 

The number of tables is denoted as . The 

tables may be occupied or not and the occu-

pying customers may be dining or waiting for 

the food.  is the proportion of the tables 

at time  that are occupied by the customers 

who are still waiting for the food. Note that 

 can be positive only in the policy that 

allows occupation of the table before obtaining 

the food.  is the proportion of the tables 

at time  that are occupied by the customers 

who are dining. Note that  ≤  

holds for all . Since we are constructing a 

fluid model and atomic property of the cus-

tomers are ignored, we assume  and  

can take any value if they are non-negative 

and  ≤  holds. 

We assume that service rate of the whole 

tables are . Hence, if all the tables 

are occupied with the dining customers, i.e., 

   the service rate is calculated as 

 . The assumption is motivated 

by  queue where the mean time for the 

next service completion is calculated as , 

where  is the service rate of an individual 

server and  is the number of servers currently 

working. The mean time for the next service 

completion is calculated as above by the mem-

oryless property of exponential distribution. 

See Chapter 2 of Shortle et al.(2018) for the 

detailed derivation. 

Here, we provide the list of basic notations 

used in the first part of this paper. 

 : the incoming rate of customers

 : the rate of serving the food

 : the rate of eating the food. 

 : the capacity of the tables

: the length of the queue to wait for 

the food

: the length of the queue to find the 

table

 : the proportion of the tables  that 

is occupied by the customers who 

are waiting to obtain the food. 

 : the proportion of the tables  that 

are actually occupied by customers 

who are eating.

We compare two policies that can be ap-

plied to the same system. In Policy 1, it is 

not allowed to take the table before one gets 

the food. In Policy 2, it is allowed to do so. In 

reality, it can be the case that some of the 

customers occupy the tables before the food 

and the others do not. However, assuming 

diverse possibilities may make the problem 

complicated to analyze and hence we assume 
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that all the customers uniformly occupy the 

tables before the food.  

Ⅳ. Description of the dynamics

In this section, we provide how the system 

will evolve given the system parameters. The 

results of this section will be used in the next 

section where we derive the stationary state 

but also it has a potential to be used in fur-

ther dynamics. 

In Policy 1, it is not allowed take the table 

before the food. Hence, customers will first 

line up in  after they join the system. Note 

that  can pile up only when   . If 

  , i.e., there are remaining seats, cus-

tomers need not queue up. Hence, the case 

division for the following proposition is made. 

Proposition 1 (Dynamics in Policy 1).

For each of cases divided by the variable 

quantities, ,  and  will follow 

the ordinary differential equations given as 

follow.

1)       :

    


 , 

    


     , 

    


  .

2)       :

    


 , 


 , 

    


  .

3)       :

    


max,

    


min

             min, 
    


  .

4)       :

    


max, 

    


 , 

    


 min.

Proof. 

 increase with the rate of  since all 

the incoming customers first arrives at . 

If  is positive,  also decreases with 

the rate of  since the queue is served in the 

first server. Hence the results on 


 fol-

lows on 1) and 2). However, if   , it 

will not decrease even though    and 

the result on 


 follows on 3) and 4).
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 is 0 and the rate of increase is also 0 

when   , since there is no need to queue 

up when the tables are available. Hence, 




 in 2) and 4) comes. If   .  

increases as  is depleted, i.e., as the 

food is served. If   , that rate is  

and if   , the rate is the minimum of 

 and ; if  is smaller, all the incoming 

customers immediately pass the food service 

and go to the second queue and if  is smaller, 

only  rate of customers will conveyed to the 

second queue and  will increase with the 

rate of .  decrease as the tables 

are used up, i.e., . If   , that 

value is  and our results on 


 in 1) 

and 3) are proved. 

Lastly,  is the number of tables that 

are occupied and used for eating. It is kept 

full if    since the tables are left by 

the customers who finished eating. It will 

immediately be replenished by the ones who 

were waiting in the second queue. Hence, we 

obtain the results on 


 in 1) and 3). If 

   and   , the customers who 

obtained the food immediately take the table. 

Hence,  increases with the output rate 

of . Also the customers finish the food in 

the table with the rate of  as was in 

the assumption. Hence, the results on 


 

in 2) and 4) follow.                                  □

The dynamics of Policy 2 is more complicated. 

To avoid additional complexity, we assume 

all the customers first take the table. Hence, 

 is encountered before  for all the 

customers. The following lemma shows prop-

erties that should generally hold in Policy 2. 

Lemma 1.  

In Policy 2, the following equations hold. 

  

   if   .

Proof.

   is given almost from the as-

sumption of the system. In Policy 2, all the 

customers first take tables, i.e., become part 

of , and immediately queue up at . 

Hence, the portion  that are occupied by 

pre-eating customers, i.e.,  and the queue 

length of the second queue are equivalent. 

If   , there are still tables that 

are not occupied by any kind of customers. 

Hence, no customers will pile up in the queue 

for the table and hence    follows.    □

Proposition 2 shows equations that should 

hold in Policy 2. Lemma 1 is used in catego-

rizing the cases. 
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Proposition 2 (Dynamics in Policy 2).

In the following cases, each set of equations 

and differential equations hold under Policy 2. 

1)       

      :

    


 , 

    





   , 

    


  .

2)       

      ,   :

    


 , 

    





 max ,

    


 min .

3)       

      :

    


 , 





 , 

    


  .

4)       

      :

    


 , 

    





 max, 

    


 min.

Proof.

In 1), all the queues are positive. We first 

start with the change of .  de-

creases with the rate of  and increases 

with the output rate of . Since   , 

the food server works without slacks and hence 

the output rate of  is  and 


 

 . As the customers go out from 

, the tables become available and the 

customers in  obtain them and become a 

part of . Hence, the input rate of  is 

 and the output rate of  is also 

. Finally, the input rate of  is , 

since customers first queue up at the second 

queue. Hence, all the results in 1) follow. 

In 2),    by   . Also by   , 

  . Hence,   . We start the 

discussion from . The input rate is  

as was in 1). The output rate is the same as 

the output rate of  as was in 1) and 

since   , the output rate is . Hence, 




 . If    as was in 1), 




 would be  . Since    in 

2), it cannot decrease and hence 




max . Lastly, the output rate of 

 is  while the input rate is min



Whether or Not to Allow Preoccupation of Seats in Cafeteria Queues

Korean Management Review Vol.52 Issue.6, December 2023 1261

. Since    in 2), it cannot increase. 

Hence, 


minmin

min .
In 3), all the incoming customers directly 

take the tables and queue up at  since 

  . Hence, 


  and 



 . 


 follows as in 1). In 4), 




  as in 3). Since   , it cannot 

decrease and hence 


 is max 

instead of . Lastly, 


 follows 

as in the previous cases.                            □

Ⅴ. Stationary state and social 
welfare analysis

A stationary state in queueing theory is a 

state where the variable distributions do not 

change as time passes. Hence, performance of 

the system, such as average number of people 

in the system or average waiting time of the 

customers also does not change. Some of sta-

tionary states are also steady states which the 

system reaches in the long run. Steady states 

or stationary states are usually the focus of 

analysis since they are unique and they facil-

itate mathematical analysis. In this section, 

we characterize the stationary state of the 

system and find the social welfare in it. Since 

we are working with the fluid approximation 

of the system where all the randomness is 

vanished, all the variables and performances 

will be calculated as fixed value rather than 

expectations of variables with non-trivial 

distributions. 

We are also interested in the welfare analy-

sis of the system. Starting from Naor (1969), 

there have been two main kinds of objective 

functions that are considered in the literature 

- revenue and social welfare. The revenue is 

the one the service provider earns and the 

social welfare is the amount of revenue added 

by the net utility of the customers. In this 

paper, we focus on the social welfare in the 

stationary state. In the microeconomic frame-

work for queueing systems, some of the cus-

tomer behaviors are considered as the result 

of decision making. In our model, joining 

decision is modeled as the result of utility 

maximization. Not every customer who ob-

serves the queue enters the system. Customers 

compare the reward - the positive utility they 

will enjoy from obtaining the service - and the 

related cost. Only when the reward is larger, 

one joins the queue. This framework naturally 

enables the calculation the social welfare. 

We present additional definitions for the 

social welfare analysis. Since customers have 

a choice to join or not, there are two kinds of 

incoming rates - the potential incoming rate 
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 and the actual incoming rate . Only 

the customers who finds the expected utility 

of entering the system to be positive make an 

actual entry and hence  ≤ . The re-

ward from the service is assumed to be a con-

tinuous random variable  that follows the 

cumulative distribution function . We 

assume there exist the lower bound  and 

the upper bound  for the support of , i.e., 

   and   . When the customer 

joins the queue, the waiting cost will incur. 

We assume that the waiting cost is linear to 

the waiting time.  is defined as the cost 

coefficient for the tables and  is defined as 

the one for the food. Also, we denote the waiting 

time from  as  for   . Hence, if a cus-

tomer has waited in the queue for the table 

for 2 units of time ( ) and in the queue 

for the food for 3 units of time ( ), the 

total cost the customer experience is  . 

A customer’s net utility is given as follows: 



Once customers observe the system, they 

calculate the above net utility and observe 

whether it is positive or not. Since the net 

utility is an increasing function of the reward, 

we can find the threshold, say , such that 

the customers with   leave the system 

without obtaining the service and the cus-

tomers with ≥  enter. 

The following shows the list of the addi-

tional notations that enable the social wel-

fare analysis. 

: the potential incoming rate.

 : the waiting time experienced in the 

queue for the table

 : the waiting time experienced in the 

queue for the food.

 : the cost related to the queue for the 

table.

 : the cost related to the queue for the 

food.

 : the reward from the service. It is a 

continuous random variable distributed 

with the cumulative distribution .

 : the lower bound for the support of , 

i.e.,   .

 : the upper bound for the support of , 

i.e.,   .

 : the threshold of the reward.

We will find the stationary states of the 

system. The notations that evolve with the 

time have been denoted with  until now. For 

example, the incoming rate is given as . 

The stationary versions of them will be de-

noted with ∞. Hence, ∞ will denote the 

stationary incoming rate, if it exists. Also, 

we will now assume that the potential incoming 

rate is stationary to facilitate the discussion 

in the stationary state. 



Whether or Not to Allow Preoccupation of Seats in Cafeteria Queues

Korean Management Review Vol.52 Issue.6, December 2023 1263

Proposition 3 shows the parametric con-

ditions that allow stationary states and prop-

erties of stationary queue lengths for Policy 1. 

Proposition 3 (Stationary states in 

Policy 1).

Depending on the conditions on ∞,  

and , the stationary states ∞, ∞, 

∞ and ∞ satisfy the followings. 

1) ∞  :

    ∞  ∞  ∞  .

2) ∞  :

    ∞  ∞  ∞  ,

      ∞.

3) ∞   :

    ∞  ∞  ∞  .

4) ∞ min:
    ∞  ∞  ∞  .

Proof. 

We start with Proposition 1 which depicted 

the differential equations that should be 

satisfied. In the stationary states, those dif-

ferential equations should take the value of 0 

and it gives the condition in the current 

theorem. 

To make ∞  ∞  ∞  , the 

followings should hold. See 1) of Proposition 1.

     


 ∞, 

     


  ∞  , 

    


  .

Rearranging ∞   should hold 

and it makes 1).   

If ∞  ∞  ∞  , the fol-

lowing should hold. See 2) of Proposition 1.

     


 ∞, 


 , 

     


  ∞,

Rearranging we have ∞   ∞ 

and since   ,  . Hence, 2) follows. 

To make ∞  ∞  ∞  , the 

following should hold by 3) of Proposition 1.

     


max∞, 

     


min∞, 

     


  .

Rearranging, min∞ and  ∞

 . Hence, ∞    and 3) follows. 

To make ∞  ∞  ∞  , the 

following should hold by 4) of Proposition 1. 
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   


max∞,


 , 

   


min∞∞.

Rearranging, ∞  and ∞∞

  . Hence, ∞ min and 4) 

follows.                                                  □

Proposition 4 shows the parametric conditions 

that allow stationary states and properties of 

stationary queue lengths for Policy 2. 

Proposition 4 (Stationary states in 

Policy 2).

For each of the cases, the followings hold. 

1) ∞  ≤:

      ∞,

    Either ∞ 


 and ∞   or 

    ∞ 


 and ∞  .

2) ∞   :

    ∞  ∞  

    ∞  ∞∞  , 

    ∞  .

3) ∞ min:
    ∞    

    ∞  ∞∞  .

Proof. 

Note that ∞∞ ≤  should always 

hold by the assumption. ∞∞ ≤  

can be equivalently depicted as 




∞

≤  since ∞  ∞ and   ∞. 

If ∞∞  , 




∞
  and 

∞ 
 


.

To make ∞   ∞  ∞   

∞∞  , the following should hold by 

1) of Proposition 2.

     


 ∞∞, 

     





  ∞ ,

     


  ∞.

Rearranging we have   ∞  ∞. 

Since ∞ ≤ ,  ≤. By ∞∞ 

, ∞ 
 


. 

To make ∞   ∞  ∞   

∞∞  , the following should hold by 

3) of Proposition 2.

    


 , 

     





 ∞, 

     


  ∞
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Rearranging ∞   ∞. Since 

∞ ≤ ,  ≤. Since ∞∞  , 

∞ 


 and hence 1) of the current 

proposition is proved. 

To make ∞   ∞  ∞   

∞∞  , ∞  , the following holds 

by 2) of Proposition 2.

     


 ∞,

     





 max ,

     


 min 

Rearranging, we have ∞  and  ≥

 and 2) of the current proposition is proved. 

To make         

  , the followings should hold by 4) of 

Proposition 2.

    


 ,

     





 max∞, 

     


 min∞∞

Rearranging we have ∞ ≤  and ∞

 ∞. Hence, ∞ min∞  
and 3) of the current proposition is proved.

□

Finally, we compare the utilities generated 

from each of the policies. The system utility 

is given as the reward from the service minus 

the waiting cost for the whole customers as 

follows. Since the utility of the customers who 

do not choose to enter the system is normal-

ized to 0, we only need to sum the net utility 

of the customers who actually enter. 

(Total reward) - (Total waiting cost from 

) - (Total waiting cost from )

Since we are dealing with the fluid models, 

the summation of the net utilities for the whole 

customers is represented as an integral. The 

following theorem is the main result of this 

paper. The result shows that Policy 1 and 

Policy 2 show the same system utility per-

formance in the stationary states. 

Theorem 1 (Identity of the system utilities). 

The system utility is not dependent on the 

policies. 

Proof. 

We will exclude the case   which 

occurs with probability 0 and hence first, 

assume that   and ∞ . By 2) of 

Proposition 3, ∞  ∞  ∞   

makes a stationary state with ∞   

∞ in Policy 1. Then, there exists   that 

satisfies the following. 
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    ∞ ∞

           ∞ 

 can be calculated as follows:

∞
 

The accumulation of queues occurs until the 

customers with the reward  be indifferent 

between entering the service or renege. In 

case of  , only  accumulates. Since 

the we are working with fluid limits, the 

waiting time is deterministically given as the 

queue length divided by the service rate. 

Therefore, ∞ 

∞
  holds 

and hence ∞ 




. 

The system reward in a unit time is given 

as ∞



. Among the whole poten-

tial customers,  portion of customers 

will have the reward of  and using the same 

way the expectations of continuous variables 

are calculated the system reward is given as 

above with ∞
 .

By the linearity of the waiting time cost 

function, the waiting cost in a unit time is 

given as ∞, the system utility is calcu-

lated as

    ∞



∞

      ∞







      ∞





 .

Now we compare the above with the system 

utility from Policy 2. By 2) of Proposition 3, 

∞   ∞ holds and either ∞




 and ∞   or ∞ 


 

and ∞   holds. By ∞  we can 

calculate the threshold reward again as follows. 

    ∞ ∞

           ∞ .

Hence, the threshold   is the same as in 

Policy 1, i.e., ∞
 . 

Depending on the system parameters, the 

∞ may be positive or zero. First, we 

assume ∞   and hence ∞ 


 

and see whether there is a contradiction. Since 

the customer with the threshold reward  

will be indifferent between entering the service 

and not, the following holds.



∞


∞
 . 
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Then, the stationary ∞ is calculated as

∞ 





.

If the above value is positive we are in the 

case with ∞  . If it is not the case 

∞   and ∞ 


. In case of 

∞  , the system utility is calculated as 

follows:

∞





 





  ∞





 
 

  ∞





 




  ∞











  ∞





. 

The system utility formula is the same as 

in Policy 1. Since  is also the same, we have 

the equivalence in the case of ∞  .

Now suppose ∞   and ∞ 




. Since the threshold customer will have 

the zero utility as before, 

∞
  holds. 

Since ∞  , the system utility is cal-

culated as

    ∞



∞

      ∞





with ∞
  again and the equiv-

alence still holds in this case. 

Now assume   and ∞ . By 3) 

of Proposition 3, ∞    ∞  

∞  ∞   holds in stationarity when 

Policy 1 is adopted. Now the threshold is given 

from the following equation:

    ∞ ∞

           ∞.

Hence, ∞
 . 

The queue accumulates until customers 

with   have the utility of 0. Since only  

accumulates, 

∞
  and hence 

∞ 


.

The system utility in Policy 1 is then, 

    ∞



∞

      ∞



.

When Policy 2 is applied, ∞   , 



Seung Bum Soh

1268 Korean Management Review Vol.52 Issue.6, December 2023

∞  ∞  , ∞  ∞

∞  , ∞  . Hence, by the same rea-

soning as in Policy 1, we obtained the same 

system utility with the same  and hence the 

equivalence is also proved when  .

Finally in case of ∞ min , 
whether in Policy 1 or 2, all the potentjial 

customers can enter without incurring any 

waiting cost since in ∞ ∞  

Everyone will enter without incurring waiting 

cost and hence also the equivalence holds.  □

Ⅵ. Conclusion

We have analyzed the problem of cafeteria 

queues where we have two choices of polices 

regarding the sequence the customer may go 

through - first taking the table and obtain 

the food and first obtain the food and find the 

table. Since executing an exact analysis is pos-

sibly a daunting job, we have used fluid limits 

to facilitate calculation of the performances. 

In the fluid limits, the effect from the first 

order moment of the variables survives while 

variability, especially the second order moment 

effect vanishes. We have also assumed that if 

the table taking before the food is allowed, 

all the customers will uniformly do it first. 

First, the dynamics of the queue lengths for 

the table and the food are derived as with 

ordinary differential equation in different para-

metric assumptions. We use these general re-

sults to find the property of stationary states. 

Finally, the social welfare in the stationary 

state incurred from each of the policies are 

calculated and it turned out that the social 

welfares are the same regardless of the policies. 

Hence, we can conclude that the choice of 

the policy does not affect the social welfare in 

the stationary state at least in our model 

where the first order effect is important. We 

can infer that the notion that taking the ta-

ble first is socially sub-optimal is not well- 

supported analytically especially under the 

assumption that none of the customers first 

wait for the table and take the food. Service 

providers can take managerial implications from 

this point - whatever policy is employed, the 

social welfare is the same if it is uniformly 

applied to all the customer. The conditional 

part is especially important and it can explain 

why we are sometimes asked by service pro-

viders when ordering the food whether we had 

already reserved the seat. It can be interpreted 

as urging customers to behave uniformly. Our 

work is the first one to raise the problem of 

whether or not to allow preoccupation of seats 

and hence is distinct from existing literature 

on cafeteria queues, e.g., June & Jain(2010), 

Weber & Weiss(1994) and Füßler et al.(2019).

However, there are several aspects that are 

not dealt in this paper that may change our 

conclusion on the identity of social welfare, 

Effectively addressing these will make good 
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extension from our framework. The most im-

portant extension will be on adding customer 

heterogeneity in their behavior. Even though 

taking the table first is allowed, some of the 

customers do not or cannot take it. Then, it is 

possible that inequality between the two groups 

- customers who take the table first and the 

one who do not - may occur. Since in the policy 

where preoccupation of the table is not al-

lowed, inequality among customers will not 

appear, this difference may support the notion 

that disallowance of preoccupation is desirable. 

Similarly, the customers may differ in the 

size of the group they belong to. Customers 

came alone will not have ways to reserve the 

seat, while ones in groups can utilize division 

of labor and let one member to reserve and 

others to take foods. This heterogeneity will 

also increase the inequality of the system. A 

fact that real-world decision maker does not 

always make optimal solutions (Kwak, 2014) 

can also be incorporated in the model.

Additionally, using a different analytic mod-

eling may change the conclusion. There are 

two main aspects in our modeling - using fluid 

limit and stationary states. Using an exact 

analysis or approximation with Brownian mo-

tion where the second order moment is not 

vanished may convert our qualitative results. 

If the second moment is incorporated in the 

model by Brownian approximation, we can 

develop a criterion that is based on not only 

the expectation but also on variance. Then, 

usual preference toward the policy that does 

not allow preoccupation can be justified by 

smaller variance in the waiting times. Also 

comparing performance index for transient 

states rather than the stationary states will 

enrich our understanding of cafeteria queues. 

For example, it can be the case that one policy 

outperform the other in clearing times when 

there are given number of customers and if 

the customers do not have a choice to renege 

the system. The basic framework that we offer 

in this paper may work as a base for those 

possibly fruitful extensions. Our contribution 

lies in first raising the policy selection prob-

lem in cafeteria queues and also providing a 

stylized model to study it. 
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