인터넷 정보 검색 행동과 영화 흥행의 상관관계에 대한 연구
초록
소비자들은 제품이나 서비스를 구매하기 이전에 불확실성의 최소화를 위해 관련 정보를 탐색한다. 이와 동시에, 소비자들은 자신의 소비 경험을 다른 소비자들과 공유하는 정보 공급자의 역할도 마다하지 않고 있다. 본 연구에서는 미국 영화 시장에서 소비자들의 정보 탐색 행동과 박스오피스 성과간의 관계를 실증 분석하고 있다. 구체적으로 인터넷 검색량이 영화 매출액의 선행 변수인지, 후행 변수인지를 확인하였다. 관객들은 영화 관람 전에 영화 선택에 도움을 받기 위해 온라인 상에서 정보를 탐색하는 경향이 있다. 또한, 영화 관람 후에 자신의 소비 경험을 공유하거나 연장시키기 위한 목적으로 사후적인 정보 탐색을 하기도 한다. 더 나아가, 본 연구에서는 영화 관련 변수들을 포함한 크로스섹션 데이터 분석을 통해 사전에 정보를 탐색하고 극장을 찾는 영화와 관람 후에 정보를 탐색하는 영화가 각각 어떤 특성을 가지고 있는지를 살펴보았다.
본 연구는 교차상관 분석과 그렌저(Granger) 인과관계 검정을 통해 영화에 대한 인터넷 검색량과 매출액 사이에 양방향적인 인과관계가 존재함을 실증하였다. 구글(Google)이 제공하는 영화에 대한 일별 검색량은 영화의 일별 박스오피스 성과의 선행 변수이기도 하지만, 동시에 결과 변수가 되기도 한다. 더욱 주목할 점은 검색량이 매출액에 선행하는 경향성보다 후행하는 경향성이 더 강하다는 것이다. 이 결과는 인터넷 검색을 상품 구매 의사 결정을 위한 정보 획득 경로로 사용하는 것이 지배적일 것이라는 일반적인 믿음과 다르다. 이와 더불어, 두 가지 교차상관계수를 종속변수로 하는 회귀식의 추정을 통해 제작비의 사전 정보 탐색 경향성에 대한 양의 영향력과 관객 만족도의 사후 정보 탐색 경향성에 대한 양의 영향력을 확인하였다. 전자의 결과는 기업의 마케팅 활동이 활발할수록 해당 영화를 소비자의 고려 상품군에 포함시킬 가능성이 높다고 해석할 수 있으며, 후자의 결과는 소비자가 영화에 만족하는 정도가 클수록 해당 영화에 대한 소비 경험의 연장과 공유의 욕구가 높아진다고 이해 할 수 있다.
Abstract
When purchasing products or services, consumers seek information to lessen uncertainty. At the same time, they are ready to be an information provider sharing his/her own consumption experience. This research empirically analyzed the relationship between consumer’s Internet search behavior and box-office performance in the U.S. movie industry. Specifically, this research gave an answer to whether Internet search volume is an antecedent variable or is an outcome variable of movie revenue. Moviegoers explore information online to get support to make buying decision before visiting a theater. Additionally, they investigate information again to extend or share their experience after watching a movie. Related to this phenomena, this research figured out which attributes lead consumers to search information before or after watching movies by analyzing cross-section data.
The cross-correlation analysis and the Granger causality test showed the existence of a bilateral causal relationship between Internet search volume on a focal movie and revenue of the movie. Google Trend, daily search volume on any keywords, could be an antecedent and an outcome of daily box-office record. Furthermore, the results denote that Internet search volume shows stronger tendency to be a lagging indicator rather than to be a leading one. It is contrary to a common belief that Internet search is mainly used as an information channel while consumers make a purchase decision. The regression analysis considering cross-correlation coefficients as dependent variables confirmed that production budget has positive impact on pre-search behavior and consumer satisfaction has positive impact on post-search behavior. The former implies the more marketing activities are conducted, the greater chance the movie is included in consumer’s consideration set is assured. The latter suggests that consumers have stronger needs to extend and share their experience when they are satisfied with movies.
Keywords:
Internet Search, Google Trend, Box-office, Movie Marketing, Granger Causality키워드:
인터넷 정보 검색, 구글 트렌드, 박스오피스, 영화 마케팅, 그렌저 인과관계Acknowledgments
본 논문은 동아대학교 교내연구비 지원에 의하여 연구되었음
References
- 차경천.천정빈.윤성욱(2013), “구전자산: 측정법과 영화산업에의 응용,” 마케팅연구, 29(1), 179-195.
- Babin, B. J., Lee, Y. K., Kim, E. J., and Griffin, M.(2005), “Modeling Consumer Satisfaction and Word-of-Mouth: Restaurant Patronage in Korea,” Journal of Services Marketing, 19(3), 133-139. [https://doi.org/10.1108/08876040510596803]
- Bank, M., Larch, M., and Peter, G.(2011), “Google Search Volume and Its Influence on Liquidity and Returns of German Stocks,” Financial Markets and Portfolio Management, 25(3), 239-264. [https://doi.org/10.1007/s11408-011-0165-y]
- Basuroy, S., Chatterjee, S., and Ravid, S. A.(2003), “How Critical are Critical Reviews? The Box Office Effects of Film Critics, Star Power, and Budgets,” Journal of Marketing, 67(4), 103-117. [https://doi.org/10.1509/jmkg.67.4.103.18692]
- Brown, T. J., Barry, T. E., Dacin, P. A., and Gunst, R. F.(2005), “Spreading the Word: Investigating Antecedents of Consumers’ Positive Word-of-Mouth Intentions and Behaviors in a Retailing Context,” Journal of the Academy of Marketing Science, 33 (2), 123-138. [https://doi.org/10.1177/0092070304268417]
- Choi, H., and Varian, H.(2012), “Predicting the Present with Google Trends,” Economic Record, 88(s1), 2-9. [https://doi.org/10.1111/j.1475-4932.2012.00809.x]
- Da, Z., Engelberg, J., and Gao, P.(2011), “In Search of Attention,” The Journal of Finance, 66 (5), 1461-1499. [https://doi.org/10.1111/j.1540-6261.2011.01679.x]
- Dellarocas, C., Zhang, X. M., and Awad, N. F. (2007), “Exploring the Value of Online Product Reviews in Forecasting Sales: The Case of Motion Pictures,” Journal of Interactive Marketing, 21(4), 23-45. [https://doi.org/10.1002/dir.20087]
- Deuchert, E., Adjamah, K., and Pauly, F.(2005), “For Oscar Glory or Oscar Money?,” Journal of Cultural Economics, 29(3), 159-176. [https://doi.org/10.1007/s10824-005-3338-6]
- Doh, S. J., and Hwang, J. S.(2009), “How Consumers Evaluate eWOM (Electronic Word-of-Mouth) Messages,” CyberPsychology and Behavior, 12(2), 193-197. [https://doi.org/10.1089/cpb.2008.0109]
- Du, R. Y., and Kamakura, W. A.(2012), “Quantitative Trendspotting,” Journal of Marketing Research, 49(4), 514-536. [https://doi.org/10.1509/jmr.10.0167]
- Elberse, A.(2007), “The Power of Stars: Do Star Actors Drive the Success of Movies?,” Journal of Marketing, 71(4), 102-120. [https://doi.org/10.1509/jmkg.71.4.102]
- Eliashberg, J., and Shugan, S. M.(1997), “Film Critics: Influencers or Predictors?,” Journal of Marketing, 68-78. [https://doi.org/10.1177/002224299706100205]
- Elliott, C., and Simmons, R.(2008), “Determinants of UK Box Office Success: the Impact of Quality Signals,” Review of Industrial Organization, 33(2), 93-111. [https://doi.org/10.1007/s11151-008-9181-0]
- Ettredge, M., Gerdes, J., and Karuga, G.(2005), “Using Web-based Search Data to Predict Macroeconomic Statistics,” Communications of the ACM, 48(11), 87-92. [https://doi.org/10.1145/1096000.1096010]
- Goel, S., Hofman, J. M., Lahaie, S., Pennock, D. M., and Watts, D. J.(2010), “Predicting Consumer Behavior with Web Search,” Proceedings of the National Academy of Sciences, 107(41), 17486-17490. [https://doi.org/10.1073/pnas.1005962107]
- Hand, C., and Judge, G.(2012), “Searching for the Picture: Forecasting UK Cinema Admissions Using Google Trends Data,” Applied Economics Letters, 19(11), 1051-1055. [https://doi.org/10.1080/13504851.2011.613744]
- Heitmann, M., Lehmann, D. R., and Herrmann, A.(2007), “Choice Goal Attainment and Decision and Consumption Satisfaction,” Journal of Marketing Research, 44(2), 234-250. [https://doi.org/10.1509/jmkr.44.2.234]
- Hennig-Thurau, T., Gwinner, K. P., Walsh, G., and Gremler, D. D.(2004), “Electronic Word-of-Mouth via Consumer-opinion Platforms: What Motivates Consumers to Articulate Themselves on the Internet?,” Journal of Interactive Marketing, 18(1), 38-52. [https://doi.org/10.1002/dir.10073]
- Hennig-Thurau, T., Walsh, G., and Walsh, G.(2003), “Electronic Word-of-Mouth: Motives for and Consequences of Reading Customer Articulations on the Internet,” International Journal of Electronic Commerce, 8(2), 51-74. [https://doi.org/10.1080/10864415.2003.11044293]
- Hu, Y., Du, R. Y., and Damangir, S.(2014), “Decomposing the Impact of Advertising: Augmenting Sales with Online Search Data,” Journal of Marketing Research, 51(3), 300-319. [https://doi.org/10.1509/jmr.12.0215]
- Jedidi, K., Krider, R., and Weinberg, C.(1998), “Clustering at the Movies,” Marketing Letters, 9(4), 393-405. [https://doi.org/10.1023/A:1008097702571]
- Jun, S. P., Yeom, J., and Son, J. K.(2014), “A Study of the Method Using Search Traffic to Analyze New Technology Adoption,” Technological Forecasting and Social Change, 81, 82-95. [https://doi.org/10.1016/j.techfore.2013.02.007]
- Kulkarni, G., Kannan, P. K., and Moe, W.(2012), “Using Online Search Data to Forecast New Product Sales,” Decision Support Systems, 52(3), 604-611. [https://doi.org/10.1016/j.dss.2011.10.017]
- Lee, Y., Kim, S. H., and Cha, K. C.(2012), “A Generalized Bass Model for Predicting the Sales Patterns of Motion Pictures Having Seasonality and Herd Behavior,” Journal of Global Scholars of Marketing Science, 22 (4), 310-326. [https://doi.org/10.1080/21639159.2012.721214]
- Li, X., Shang, W., Wang, S., and Ma, J.(2015), “A MIDAS Modelling Framework for Chinese Inflation Index Forecast Incorporating Google Search Data,” Electronic Commerce Research and Applications, 14(2), 112-125. [https://doi.org/10.1016/j.elerap.2015.01.001]
- Litman, B. R.(1983), “Predicting Success of Theatrical Movies: An Empirical Study,” The Journal of Popular Culture, 16(4), 159-175. [https://doi.org/10.1111/j.0022-3840.1983.1604_159.x]
- Litman, B. R., and Kohl, L. S.(1989), “Predicting Financial Success of Motion Pictures: The '80s Experience,” Journal of Media Economics, 2(2), 35-50. [https://doi.org/10.1080/08997768909358184]
- Liu, Y.(2006), “Word of Mouth for Movies: Its Dynamics and Impact on Box Office Revenue,” Journal of Marketing, 70(3), 74-89. [https://doi.org/10.1509/jmkg.70.3.074]
- De Matos, C. A., and Rossi, C. A. V.(2008), “Word-of-Mouth Communications in Marketing: a Meta-analytic Review of the Antecedents and Moderators,” Journal of the Academy of Marketing Science, 36(4), 578-596. [https://doi.org/10.1007/s11747-008-0121-1]
- Murphy, J., and Olaru, D.(2009), “How Information Foraging Styles Relate to Tourism Demographics and Behaviours,” Journal of Vacation Marketing, 15(4), 299-309. [https://doi.org/10.1177/1356766709335692]
- Neelamegham, R., and Jain, D.(1999), “Consumer Choice Process for Experience Goods: An Econometric Model and Analysis,” Journal of Marketing Research, 373-386. [https://doi.org/10.1177/002224379903600306]
- Nelson, R. A., Donihue, M. R., Waldman, D. M., and Wheaton, C.(2001), “What's an Oscar Worth?,” Economic Inquiry, 39(1), 1-6. [https://doi.org/10.1093/ei/39.1.1]
- Prag, J., and Casavant, J.(1994), “An Empirical Study of the Determinants of Revenues and Marketing Expenditures in the Motion Picture Industry,” Journal of Cultural Economics, 18(3), 217-235. [https://doi.org/10.1007/BF01080227]
- Ravid, S. A.(1999), “Information, Blockbusters, and Stars: A Study of the Film Industry,” Journal of Business, 72(4), 463-492. [https://doi.org/10.1086/209624]
- Reinstein, D. A., and Snyder, C. M.(2005), “The Influence of Expert Reviews on Consumer Demand for Experience Goods: A Case Study of Movie Critics,” Journal of Industrial Economics, 53(1), 27-51. [https://doi.org/10.1111/j.0022-1821.2005.00244.x]
- Sawhney, M. S., and Eliashberg, J.(1996), “A Parsimonious Model for Forecasting Gross Box-office Revenues of Motion Pictures,” Marketing Science, 15(2), 113-131. [https://doi.org/10.1287/mksc.15.2.113]
- Sochay, S.(1994), “Predicting the Performance of Motion Pictures,” Journal of Media Economics, 7(4), 1-20. [https://doi.org/10.1207/s15327736me0704_1]
- Trusov, M., Bucklin, R. E., and Pauwels, K.(2009), “Effects of Word-of-Mouth versus Traditional Marketing: Findings from an Internet Social Networking Site,” Journal of Marketing, 73 (5), 90-102. [https://doi.org/10.1509/jmkg.73.5.90]
- Vicente, M. R., López-Menéndez, A. J., and Pérez, R.(2015), “Forecasting Unemployment with Internet Search Data: Does it Help to Improve Predictions When Job Destruction is Skyrocketing?,” Technological Forecasting and Social Change, 92, 132-139. [https://doi.org/10.1016/j.techfore.2014.12.005]
- Vlastakis, N., and Markellos, R. N.(2012), “Information Demand and Stock Market Volatility,” Journal of Banking and Finance, 36(6), 1808-1821. [https://doi.org/10.1016/j.jbankfin.2012.02.007]
- Vogel, H. (1998), Entertainment Industry Economics, 4th ed. Cambridge: Cambridge University Press.
- Wallace, W. T., Seigerman, A., and Holbrook, M. B.(1993), “The Role of Actors and Actresses in the Success of Films: How Much is a Movie Star Worth?,” Journal of Cultural Economics, 17(1), 1-27. [https://doi.org/10.1007/BF00820765]
- Wangenheim, F. V., and Bayón, T.(2007), “The Chain from Customer Satisfaction via Word-of-Mouth Referrals to New Customer Acquisition,” Journal of the Academy of Marketing Science, 35(2), 233-249. [https://doi.org/10.1007/s11747-007-0037-1]
- Wu, L., and Brynjolfsson, E.(2014), “The Future of Prediction: How Google Searches Foreshadow Housing Prices and Sales,” Economic Analysis of the Digital Economy. University of Chicago Press.
- Zigmond, D., and Stipp, H.(2010), “Assessing a New Advertising Effect,” Journal of Advertising Research, 50(2), 162-168. [https://doi.org/10.2501/S0021849910091324]
• 저자 이유석은 현재 서울대학교 경영대학 마케팅 전공 박사과정으로 재학 중이다. 서울대학교 경영대학 및 대학원 경영학과를 졸업하였다. 주요 연구분야는 엔터테인먼트 마케팅이다.
• 저자 차경천은 현재 동아대학교 경영학과 마케팅 전공 조교수로 재직 중이다. 한국과학기술원에서 경영공학 박사를 취득하였다. 서울대학교와 성균관대학교 연구교수를 역임하였다. 주요 연구분야로는 수요예측, 마케팅 다이나믹스, 가격정책 등이다.
• 저자 김상훈은 현재 서울대학교 경영대학 마케팅 전공 교수로 재직 중이다. 서울대학교 경영대학을 졸업하였으며, 미국 시카고대학에서 경영학석사(MBA), 미국 스탠포드대학에서 경영학 박사를 취득했다. 문화예술 마케팅, 하이테크 마케팅, 마케팅 트렌드 분야의 연구를 주로 하고 있다.