재무보고의 불투명성이 재무분석가의 이익예측오차에 미치는 영향
초록
본 연구는 Hutton, Marcus, and Tehranian(2009)에서 제안된 재량적 발생액의 3년간 시계열적 변동성으로 측정된 재무보고의 불투명성 측정치가 이익예측의 정확성과 편의로 측정되는 재무분석가의 이익예측오차에 미치는 영향을 실증적으로 분석하였다. 나아가 앞서의 관계가 시장유형, 또는 감사인 규모로 측정된 감사품질, 그리고 재무분석가의 정보환경의 변화가 있었던 IFRS 의무도입 전후기간에 따라 차이가 있는지도 살펴보았다.
분석을 위해 본 연구에서는 Hutton et al.(2009)의 방법에 따라 과거 3년간 연도별 재량적 발생액(DA)의 절대값의 합으로 측정되는 재무보고의 불투명성 측정치(이하 OPAQUE1)와 전규안·박종일(2017)에서 제안한 과거 3년간 DA의 표준편차로 측정된 재무보고의 불투명성 측정치(OPAQUE2)를 이용하여 재무분석가의 이익예측오차와의 관계를 분석하였다. 이를 분석하는데 있어 비교목적으로 DA의 결과도 살펴보았다. 분석기간은 관심변수를 기준으로 2001년부터 2015년까지 금융업을 제외한 12월 결산인 상장기업 중 분석가능 했던 최종표본 9,677개 기업/연 자료가 이용되었다.
실증분석 결과에 따르면, 첫째로 종속변수에 영향을 주는 통제변수를 고려한 후에도 재무보고의 불투명성 측정치가 높을수록 재무분석가의 이익예측의 정확성이 떨어지고, 또한 낙관적 편의의 성향이 있는 것으로 나타났다. 이러한 결과는 OPAQUE1과 OPAQUE2 모두 일치된 결과로 나타났다. 이와 달리, 선행연구에서 보편적으로 이용되었던 Kothari, Leone, and Wasley(2005)의 모형으로 측정된 DA는 재무분석가의 이익예측오차와는 통계적으로 유의한 관계가 나타나지 않았다. 둘째로 전체표본을 다시 시장유형, 감사인 규모, 그리고 IFRS 의무도입 전후기간에 따라 표본을 나누어 분석하더라도 재무보고의 불투명성 측정치와 이익예측오차 간에 양(+)의 관계는 모두 앞서와 일치된 결과였다.
이상을 종합하면, 본 연구는 3년간 DA의 다기간으로 측정된 재무보고의 불투명성이 높을 때 재무분석가들이 발표하는 이익예측오차가 증가된다는 것을 보여주었다는데 의미가 있다. 특히, 한 기간으로 측정된 DA와 달리, 3년간 DA의 반전효과가 고려된 재무보고의 불투명성 측정치는 재무분석가의 이익예측오차와 양(+)의 관계로 나타난다는 본 연구의 발견은 재무분석가의 이익예측오차를 통해 살펴본 재무보고의 불투명성과 관련한 대용치(surrogate)의 경우 DA보다는 OPAQUE 측정치가 재무분석가들에게 정보의 불확실성을 더 증가시킨다는 것을 보여준다. 따라서 본 연구의 발견은 이익의 질과 재무분석가의 이익예측오차를 다룬 관련연구에 추가적인 새로운 증거를 제공한다. 아울러 본 연구결과는 학계뿐만 아니라 재무분석가의 이익예측치를 이용하는 자본시장의 투자자 및 실무계, 또한 재무보고의 질에 관심이 있는 규제기관에게 재무보고의 불투명성이 높을 때 재무분석가의 이익예측치에 어떤 체계적인 영향을 미치고 있는지와 관련한 전반적인 이해에도 유용한 정보를 더불어 제공해 줄 것으로 예상된다.
Abstract
This study investigates whether the relation between the financial reporting opacity measured by the OPAQUE measure of Hutton et al. (2009) and analyst’s earnings forecast errors measured as forecasting accuracy and bias. In particular, we test a measure of financial reporting opacity for individual firms based on an indicator of earnings management in the prior three-year moving sum of the absolute value of annual discretionary accruals as developed by Hutton et al. (2009) and standard deviation of discretionary accruals as suggested by Jeon and Park (2016). In additional analysis, we first partition the sample into KOSPI and KOSDAQ samples and test whether the relation between financial reporting opacity and analyst’s earnings forecast errors is different for market type. Furthermore, we separate the sample into Big 4 auditor and non-Big 4 auditor samples and test whether the relation between financial reporting opacity and analyst’s earnings forecast errors is different for audit quality (i.e., high audit quality versus low audit quality samples). Moreover, we divided the sample into pre-IFRS period and post-IFRS period and test whether the relation between financial reporting opacity and analyst’s earnings forecast errors has changed since the adoption of IFRS.
In our tests, we further consider the empirical link between financial reporting opacity and analyst’s earnings forecast errors. Thus, our approach differs from the existing literature with a one-year value of discretionary accruals (hereafter DA) to capture the earnings management. This is, we use a three-year moving sum (other than a one-year value) to capture the multi-year effects of earnings management and because the moving sum is more likely to reflect an underlying policy of the firm to manage earnings (e.g., Hutton et al., 2009; Jeon and Park, 2017). In the study, we expect analysts’ earnings forecasts inaccurate and to be optimistically biased when financial reporting opacity is increasing. For analysis, our empirical tests employ two firm-level proxies of financial reporting opacity, that is, accrual-based measure of opacity. The first proxy of this study is the measure of opacity in financial reports (hereafter OPAQUE1) as developed by Hutton et al. (2009). We use OPAQUE1 is the measure of financial reporting opacity of Hutton et al. (2009) based on earnings management, calculated as the prior three-year moving sum of the absolute value of annual discretionary accruals. Following Hutton et al. (2009), discretionary accruals are measured using the modified Jones model by Dechow et al. (1995). The second proxy of this study is the measure of financial reports opacity (hereafter OPAQUE2) as suggested by Jeon and Park (2016), which is the standard deviation of annual discretionary accruals, which is calculated over years t-2 through t. We use a three-year moving sum of absolute value of discretionary accruals or standard deviation of discretionary accruals (instead of a one-year value) to capture the multi-year effects of earnings management. Therefore, these measure intends to capture both the abnormally high accruals in the year of overstatement and the subsequent reversal of prior accrual overstatements. For example, Dechow et al. (1996) show that firms subjected to enforcement actions by the SEC generally manipulate reported earnings from one to three years before being detected and the overstated accruals of these firms typically reverse fairly quickly. Our sample covers KOSPI and KOSDAQ listed firms in Korean Stock Exchange Market based on the variable of interest from 2001 to 2015 (based on the dependent variable from 2002 to 2016), thus we use 9,677 firm-year observations.
Our main findings are as follows. First, after including for several control variables that affect analyst’ earnings forecast errors, we find that a significantly positive association between analyst’ earnings forecast error and financial reporting opacity (both OPAQUE1 and OPAQUE2 proxies), consistent with our predictions. This result implies that firms with higher OPAQUE is associated with less accurate analyst’ earnings forecasts, and more optimistically biased forecasts. Whereas, we find no evidence that a significantly positive association between analyst’ earnings forecast error and the discretionary accruals (DA) of a one-year value. Second, we demonstrate that our measure of financial reporting opacity reliably predicts both analyst’ earnings forecasting accuracy and bias. This is, our results are robust to a variety of sensitivity checks such as an alternative specification. For examples, when we classify sample into KOSPI versus KOSDAQ listed firms, when we divided sample into Big 4 auditors versus non-Big 4 auditors, and when we partition the sample into pre- and post-IFRS adoption period, there are a positive and significant relation between analyst’ forecast error and financial reporting opacity, regardless of KOSPI versus KOSDAQ samples, or Big 4 auditors versus non-Big 4 auditors samples, and pre-IFRS period versus post-IFRS period. Therefore, our conclusions are not sensitive to market type, audit quality, and according to before and during IFRS adoption period, we find similar results.
Overall, these empirical evidence suggests that the financial analyst perceive financial reporting opacity as a information risk-increasing factor. Using two proxies for financial reporting opacity, we provide novel evidence that analyst’ earnings forecast error increases significantly with financial reporting opacity, which is constructed as the multi-year effects of discretionary accruals. Whereas analyst’ earnings forecast error not increases significantly with the level of discretionary accruals in the short-run. Thus, we confirm that our firm-specific measure of financial reporting opacity (both OPAQUE1 and OPAQUE2), which prior three-year moving sum or standard deviation of annual discretionary accruals compared with the level of discretionary accruals in the one-year is a reliable predicator of information uncertainty as well as provide more information about the underlying policy of earnings management of the firm. Therefore, the results of this study may provide useful information to academics as well as investors and regulatory bodies that higher financial reporting opacity are associated with less accurate analyst’ earnings forecasts, and also more optimistically biased forecasts. Furthermore, considering the importance of analyst role in decision making of investors on the stock market, our results suggests that there is a problem with the accuracy of analyst’s earnings forecast, i.e., firms with more opaque financial reports. In addition to providing the first empirical examination of the factors that connect financial reporting opacity to analyst’s earnings forecast errors, the results have implications for earnings management and analyst’s forecast errors studies in prior research.
Keywords:
Financial reporting opacity, Discretionary accruals, Information risk, Analyst’ earnings forecast errors, Forecast accuracy and bias, Market type, Auditor size, Pre- and Post-IFRS adoption키워드:
재무보고의 불투명성, 정보의 불확실성, 재무분석가의 이익예측오차, 정확성과 편의, 시장유형, 감사인 규모, IFRS 도입 전후Acknowledgments
본 논문에 유익한 제언을 주신 익명의 두 심사자께 감사를 표한다. 또한 본 논문에 조언을 주신 2017년 한국회계학회 동계학술대회 참가자들에게도 감사하며, 첫 번째 저자는 삼정KPMG의 연구비 지원에 감사드린다.
References
- 강나라·최 관(2016), “누가 주가붕괴위험을 부담하는가?: 회계이익의 불투명성을 중심으로,” 회계학연구, 41(2), 87-129.
- 권수영·기은선(2011), “발생액의 질이 감사시간 및 감사보수에 미치는 영향에 관한 연구,” 회계학연구, 36 (4), 95-137.
- 김성혜·전성빈·송민섭(2012), “재무분석가의 예측특성을 통해 살펴본 발생액의 질 측정치의 유용성에 관한 분석,” 회계연구, 17(2), 231-261.
- 김지홍·백혜원·고재민(2010), “발생액의 질과 재무분석가의 정보 환경이 이익 예측 정확도에 미치는 영향,” 회계학연구, 35(3), 1-35.
- 김지홍·유정민·고재민(2014), “상이한 이익조정 수단이 재무분석가 예측의 불확실성과 재무분석가 수에 미치는 영향,” 회계학연구, 39(4), 213-249.
- 남혜정(2015), “한국채택국제회계기준의 도입과 재무분석가의 이익예측치 특성,” 경영학연구, 4(3), 933-956.
- 박종일·곽수근(2007), “감사인 교체와 감사품질,” 회계와 감사연구, 46, 191-226.
- 박종일·박찬웅(2007), “비정상 감사보수와 감사품질이 비정상 감사시간에 미치는 영향,” 회계와 감사연구, 45, 119-159.
- 박종일·전규안·노희천(2009), “회계이익과 과세소득의 차이, 일시적 차이 및 순이연법인세변동 정보가 재무분석가의 이익예측치에 미치는 영향,” 세무와회계저널, 10(2), 225-260.
- 박종일·지승민·신재은(2016), “세무보고 공격성이 재무분석가의 이익예측오차에 미치는 영향,” 경영학연구, 45(6), 1763-1804.
- 박헌준·신현한·최완수(2004), “한국기업의 대리인비용과 기업가치: 외국인 지분의 역할,” 경영학연구, 33 (2), 655-682.
- 배성호·정석우·오광욱(2012), “K-IFRS 공시품질과 재무분석가 이익예측분산도,” 경영학연구, 41(4), 643-674.
- 선우혜정·최종학·이병희(2010), “지분율 괴리도가 재무분석가의 이익예측치오차에 미치는 영향,” 회계학연구, 35(2), 1-34.
- 안윤영·신현한·장진호(2005), “외국인투자자와 정보비대칭 간의 관계,” 회계학연구, 30(4), 109-131.
- 안윤영·유영태·조영준·신현한·장진호(2006), “재무분석가의 특성이 이익예측정확성에 미치는 영향,” 회계학연구, 31(4), 1-24.
- 윤순석(2001), “상장기업과 코스닥기업의 이익관리에 대한 비교 연구,” 증권학회지, 29, 57-85.
- 임태균·정석우(2008), “이연법인세정보와 재무분석가 이익예측치의 특성,” 회계저널, 17(3), 181-204.
- 전규안·박종일(2017), “회계이익의 불투명성이 감사보수 및 감사시간에 미치는 영향,” 경영학연구, 46(5), 1303-1341.
- 정석우·배성호·임태균(2012), “환위험 기업에 대한 재무분석가 이익예측 특성,” 회계학연구, 37(4), 1-35.
- 정석우·임태균(2005), “회계이익의 지속성이 재무분석가의 이익예측오차와 이익예측정확성에 미치는 영향,” 회계학연구, 30(2), 209-235.
- 정성환·한승수(2011), “재무분석가의 발생액 구분 능력과 경영자 이익조정과의 관계에 관한 연구,” 회계학연구, 36(3), 103-133.
- 정설희·박범진(2015), “비감사서비스 및 이익조정이 경영자와 재무분석가의 이익예측에 미치는 영향,” 회계연구, 20(5), 157-189.
- 정현욱·이현주·이강일(2014), “감사시간이 재무분석가의 이익예측편의에 미치는 영향,” 경영학연구, 43 (4), 1079-1111.
- 조중석·조문희(2009), “경영자의 기회주의적 재량권이 재무분석가의 이익 예측에 미치는 영향,” 회계학연구, 14(1), 147-173.
- Abernathy, J. L., T. Kang, G. V. Krishnan, and C. Wang(2018), “Is there a relation between residual audit fees and analysts’ forecasts?,” Journal of Accounting, Auditing & Finance, 33(3), 299-323. [https://doi.org/10.1177/0148558X16637963]
- Asquith, P., M. B. Mikhail, and A. S. Au(2005), “Information content of equity analyst reports,” Journal of Financial Economics, 75(2), 245-282. [https://doi.org/10.1016/j.jfineco.2004.01.002]
- Barron, O., and P. Stuerke(1998), “Dispersion in analysts’ earnings forecasts as a measure of uncertainty,” Journal of Accounting, Auditing and Finance, 13, 243-268. [https://doi.org/10.1177/0148558X9801300305]
- Bates, D.(2000), “Post-’87 crash fears in the S&P 500 futures options market,” Journal of Econometrics, 94, 181-238. [https://doi.org/10.1016/S0304-4076(99)00021-4]
- Behn, B. K., J. H. Choi, and T. Kang(2008), “Audit quality and properties of analysis earnings forecasts,” The Accounting Review, 83(2), 327-349. [https://doi.org/10.2308/accr.2008.83.2.327]
- Black, F. and M. Scholes(1973), “The pricing of options and corporate liabilities,” Journal of Political Economy, 81(3), 637-654. [https://doi.org/10.1086/260062]
- Bradshaw, M. T., A. P. Hutton, A. Marcus, and H. Tehranian(2010), “Opacity, crash risk, and the option smirk curve,” Working Paper, Boston University. [https://doi.org/10.2139/ssrn.1640733]
- Bradshaw, M., S. Richardson, and R. Sloan(2001), “Do analysts and auditors use information in accruals?,” Journal of Accounting Research, 39(1), 45-74. [https://doi.org/10.1111/1475-679X.00003]
- Byard, D., Y. Li, and Y. Yu(2011), “The effect of mandatory IFRS adoption on financial analysts’ information environment,” Journal of Accounting Research, 49(1), 69-96. [https://doi.org/10.1111/j.1475-679X.2010.00390.x]
- Chen, C. JP., Y. Ding, and C. Kim(2010), “High-level politically connected firms, corruption, and analyst forecast accuracy around the world,” Journal of International Business Studies, 41, 1505-1524. [https://doi.org/10.1057/jibs.2010.27]
- Chen, T., L. Xie, and Y. Zhang(2017), “How does analysts’ forecast quality relate to corporate investment efficiency?,” Journal of Corporate Finance, 43, 217-240. [https://doi.org/10.1016/j.jcorpfin.2016.12.010]
- Cohen, D., A. Dey, and T. Lys(2008), “Real and accrual-based earnings management in the pre-and post-Sarbanes-Oxley period,” The Accounting Review, 83(3), 757-787. [https://doi.org/10.2308/accr.2008.83.3.757]
- Cotter, J., A. Tarca, and M. Wee(2012), “IFRS adoption and analysts’ earnings forecasts: Australian evidence,” Accounting and Finance, 52, 395-419. [https://doi.org/10.1111/j.1467-629X.2010.00392.x]
- Das, S., C. Levine, and K. Sivaramakrishnan(1998), “Earnings predictability and bias in analysts’ earnings forecasts,” The Accounting Review, 73(2), 277-294.
- Datta, S., M. I. Datta, and V. Sharma(2011), “Product market pricing power, industry concentration and analysts’ earnings forecasts,” Journal of Banking and Finance, 35(6), 1352-1366. [https://doi.org/10.1016/j.jbankfin.2010.10.016]
- Dechow, P. M., R. G. Sloan, and A. P. Sweeney (1995), “Detecting earnings management,” The Accounting Review, 70(2), 193-225.
- Dechow, P. M., R. G. Sloan, and A. P. Sweeney (1996), “Causes and consequences of earnings manipulation: An analysis of firms subject to enforcement actions by the SEC,” Contemporary Accounting Research, 13(1), 1-36. [https://doi.org/10.1111/j.1911-3846.1996.tb00489.x]
- DeFond, M. and K. Subramanyam(1998), “Auditor changes and discretionary accruals,” Journal of Accounting and Economics, 25(1), 35-67. [https://doi.org/10.1016/S0165-4101(98)00018-4]
- Degeorge, F., J. Patel, and R. Zeckhaiuser(1999), “Earnings management to exceed thresholds,” Journal of Business, 72, 1-33. [https://doi.org/10.1086/209601]
- Duru. A. and D. M. Reeb(2002), “International diversification and analysts’ forecast accuracy and bias,” The Accounting Review, 77(2), 415-433. [https://doi.org/10.2308/accr.2002.77.2.415]
- Eames, M. and S. Glover(2003), “Earnings predictability and the directing of analysts’ earnings forecast Errors,” The Accounting Review, 78(3), 707-724. [https://doi.org/10.2308/accr.2003.78.3.707]
- Easterwood, J. C. and S. R. Nutt(1999), “Inefficiency in analyst forecasts: Systematic misreaction or systematic optimism?,” Journal of Finance, 54, 1777-1797. [https://doi.org/10.1111/0022-1082.00166]
- Francis, J., R. LaFond, P. Olsson, and K. Schipper (2005), “The market pricing of accruals quality,” Journal of Accounting and Economics, 39(2), 295-327. [https://doi.org/10.1016/j.jacceco.2004.06.003]
- Graham, J., C. Harvey, and S. Rajgopal(2005), “The economic implications of corporate financial reporting,” Journal of Accounting and Economics, 40(1-3), 3-73. [https://doi.org/10.1016/j.jacceco.2005.01.002]
- Healy, P. M. and J. M. Wahlen(1999), “A review of the earnings management literature and its implications for standard setting,” Accounting Horizons, 3, 365-383. [https://doi.org/10.2308/acch.1999.13.4.365]
- Hope, O.(2003), “Accounting policy disclosures and analysts’ forecasts,” Contemporary Accounting Research, 20(2), 295-321. [https://doi.org/10.1506/LA87-D1NF-BF06-FW1B]
- Horton, J., G. Serafeim, and I. Serafeim(2013), “Does mandatory IFRS adoption improve the information environment?,” Contemporary Accounting Research, 30(1), 388-423. [https://doi.org/10.1111/j.1911-3846.2012.01159.x]
- Houlthausen, R.(1990), “Accounting method choice: Opportunistic behavior, efficient contracting and information perspectives,” Journal of Accounting and Economics, 12(1-3), 207-218. [https://doi.org/10.1016/0165-4101(90)90047-8]
- Hutton, A. P., A. J. Marcus, and H. Tehranian (2009), “Opaque financial reports, R2, and crash risk,” Journal of Financial Economics, 94(1), 67-86. [https://doi.org/10.1016/j.jfineco.2008.10.003]
- Jensen, M. C.(2005), “Agency costs of overvalued equity,” Financial Management, 34(1), 5-20. [https://doi.org/10.1111/j.1755-053X.2005.tb00090.x]
- Jin, L. and C. S. Myers(2006), “R2 around the world: New theory and new tests,” Journal of Financial Economics, 79(2), 257-292. [https://doi.org/10.1016/j.jfineco.2004.11.003]
- Jones, J.(1991), “Earnings management during import relief investigations,” Journal of Accounting Research, 29(2), 193-228. [https://doi.org/10.2307/2491047]
- Kim, J. B. and L. Zhang(2014), “Financial reporting opacity and expected crash risk: Evidence from implied volatility smirks,” Contemporary Accounting Research, 31(3), 851-875. [https://doi.org/10.1111/1911-3846.12048]
- Kothari, S. P., A. J. Leone, and C. E. Wasley(2005), “Performance matched discretionary accrual measures,” Journal of Accounting and Economics, 39, 163-197. [https://doi.org/10.1016/j.jacceco.2004.11.002]
- Kothari, S. P., S. Shu, and P. D. Wysocki(2009), “Do managers withhold bad news?,” Journal of Accounting Research, 47(1), 241-276. [https://doi.org/10.1111/j.1475-679X.2008.00318.x]
- Leggett, D., L. M. Parsons, and A. L. Reitenga (2009), “Real earnings management and subsequent operating performance,” Working Paper, University of Alabama. [https://doi.org/10.2139/ssrn.1466411]
- Libby, R. J. E. Hunton, H. T. Tan, and N. Seybert (2008), “Relationship incentives and the optimistic/pessimistic pattern in analysts’ forecasts,” Journal of Accounting Research, 46(1), 173-198. [https://doi.org/10.1111/j.1475-679X.2007.00265.x]
- Lim, T.(2001), “Rationality and analysts’ forecast bias,” The Journal of Finance, 56(1), 369-386. [https://doi.org/10.1111/0022-1082.00329]
- Matsumoto, D.(2002), “Management’s incentives to avoid negative earnings surprises,” The Accounting Review, 77, 483-514. [https://doi.org/10.2308/accr.2002.77.3.483]
- McNichols, M. and P. O’Brien(1997), “Self-selection and analyst coverage,” Journal of Accounting Research, 35, 167-199. [https://doi.org/10.2307/2491460]
- Roychowdhury, S.(2006), “Earnings management through real activities manipulation,” Journal of Accounting and Economics, 42(3), 335-370. [https://doi.org/10.1016/j.jacceco.2006.01.002]
- Schipper, K.(1989), “Commentary on earnings management,” Accounting Horizons, 3(4), 91-102.
- Tan, H., S. Wang, and M. Welker(2011), “Analyst following and forecast accuracy after mandated IFRS adoptions,” Journal of Accounting Research, 49(5), 1307-1357. [https://doi.org/10.1111/j.1475-679X.2011.00422.x]
- Wang, H. and W. Du(2012), “Overvaluation, financial opacity and crash risk,” Working Paper, Louisiana State University. [https://doi.org/10.2139/ssrn.2135704]
- Yan, S.(2011), “Jump risk, stock returns, and slope of implied volatility smile,” Journal of Financial Economics, 99(1), 216-233. [https://doi.org/10.1016/j.jfineco.2010.08.011]
- Yu, F. F.(2008), “Analyst coverage and earnings management,” Journal of Financial Economics, 88(2), 245-271. [https://doi.org/10.1016/j.jfineco.2007.05.008]
- Zang, A. Y.(2012), “Evidence on the trade-off between real activities manipulation and accrual-based earnings management,” The Accounting Review, 87(2), 675-703. [https://doi.org/10.2308/accr-10196]
• 저자 박종일은 충북대학교 경영대학 경영학부의 재무회계 전공 교수로 재직 중이며, 현재 삼정KPMG 회계법인의 ACI(Audit Committee Institute) 교수이다. 홍익대학교 경영학부를 졸업한 후, 동 대학의 대학원에서 경영학석사와 박사학위를 취득하였다. 주요 연구분야는 재무보고의 질, 회계이익과 과세소득의 차이, 감사품질, 조세회피, 세무위험, 기업지배구조, 재무분석가의 이익예측의 특성 등이다.
• 저자 김수인은 현재 충북대학교 경영대학 박사과정에 재학 중이다. 청주대학교 회계학과를 졸업하였으며, 충북대학교 대학원에서 회계학과 석사를 취득한 후, 동 대학원의 박사과정에 재학 중이다. 주요 연구분야는 재무보고의 질, 배당의 정보효과, 투자효율성, 조세회피, 세무위험 등이다.
• 저자 신상이는 현재 충북대학교 경영대학 박사과정에 재학 중이다. 대진대학교 경영학과를 졸업하였으며, 충북대학교 대학원에서 회계학과 석사를 취득한 후, 동 대학원의 박사과정을 이수한 후 졸업논문을 준비 중에 있다. 주요 연구분야는 재무보고의 질, 조세회피, 세무위험, 감사위험, 재무분석가의 이익예측의 특성 등이다.